
Exploiting Problem-Specific Knowledge and
Computational Resources in Derivative-Free

Optimization

Jeffrey Larson

Argonne National Laboratory

September 8, 2015

Line Search

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Line Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

2 of 39.

Trust Region Methods

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Trust Region Methods

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

3 of 39.

Problem setup

minimize
x

f (x ; S(x))

subject to: x ∈ D ⊂ Rn

where the objective f depends on the output(s) from a simulation S(x).

I Derivatives of S may not be available
I Constraints defining D may or may not depend on S
I The dimension n is small
I Evaluating S is expensive
I f and/or S may be noisy. If the noise is stochastic,

minimize
x

E
[
f̄ (x)

]
.

4 of 39.

Problem setup

minimize
x

f (x ; S(x))

subject to: x ∈ D ⊂ Rn

where the objective f depends on the output(s) from a simulation S(x).

I Derivatives of S may not be available
I Constraints defining D may or may not depend on S
I The dimension n is small
I Evaluating S is expensive
I f and/or S may be noisy. If the noise is stochastic,

minimize
x

E
[
f̄ (x)

]
.

4 of 39.

Motivation

LHC: $4.75B to build; $1B to operate; $0.25B computation 5 of 39.

Motivation

Mira: $180M to build; $4M to operate; 3.9 Megawatts 6 of 39.

Motivation

7 of 39.

Motivation

7 of 39.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

8 of 39.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

8 of 39.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)

I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

8 of 39.

Initial approaches

I Grid over the domain (easily parallelizable)

I Random sampling (easily parallelizable)

I Evolutionary Algorithms (many are parallelizable)
I Genetic Algorithm
I Simulated Annealing
I Particle Swarm
I Ant Colony Optimization
I Bee Colony Optimization
I Cuckoo Search
I Bacterial Colony Optimization
I Grey Wolf Optimization
I Firefly Optimization
I Harmony Search
I River Formation Dynamics

8 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Nelder-Mead

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

9 of 39.

Coordinate Search

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Coordinate Search

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

10 of 39.

Approximate Gradients

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Approximate Gradients

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

11 of 39.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

12 of 39.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I For Kiefer-Wolfowitz,

Gi(x
k) =

f̄ (xk + ckei)− f̄ (xk − ckei)

2ck

where ei is the ith column of In.

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

12 of 39.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I For Spall’s SPSA,

Gi(x
k) =

f̄ (xk + ckδ
k)− f̄ (xk − ckδ

k)

2ckδki

where δk ∈ Rn is a random perturbation vector

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

12 of 39.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes

(specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

12 of 39.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

12 of 39.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

12 of 39.

Modify Existing Methods for Stochastic

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.

13 of 39.

Modify Existing Methods for Stochastic

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.

13 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

Model-based Methods

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 of 39.

DFO warnings
I Be careful

1) A problem can be written as scalar output, black box

2) An algorithm exists to optimize scalar output, black box function

1) and 2) true doesn’t mean the algorithm should be used

minimize
x

f (x) = ‖Ax − b‖

I If your problem has derivatives, please use them. If you don’t have them. . .
I Algorithmic Differentiation (AD) is wonderful

I Does the problem have structure? Avoid black boxes

15 of 39.

DFO warnings
I Be careful

1) A problem can be written as scalar output, black box

2) An algorithm exists to optimize scalar output, black box function

1) and 2) true doesn’t mean the algorithm should be used

minimize
x

f (x) = ‖Ax − b‖

I If your problem has derivatives, please use them. If you don’t have them. . .
I Algorithmic Differentiation (AD) is wonderful

I Does the problem have structure? Avoid black boxes

15 of 39.

DFO warnings
I Be careful

1) A problem can be written as scalar output, black box

2) An algorithm exists to optimize scalar output, black box function

1) and 2) true doesn’t mean the algorithm should be used

minimize
x

f (x) = ‖Ax − b‖

I If your problem has derivatives, please use them. If you don’t have them. . .
I Algorithmic Differentiation (AD) is wonderful

I Does the problem have structure? Avoid black boxes

15 of 39.

Opening up the black box

100 200 300 400 500 600 700 800 900 1000 1100 1200
0.058

0.075

0.1

0.14

0.2

0.4

0.8

Number of Iterations

F
it
 V

a
lu

e
 (

lo
g
 s

c
a
le

)

Serial** PSO

Serial Simplex

Serial POUNDERS

1024−Core PSO

Tuning quadrapole moments for a particle accelerator simulation.

f (x) =

r∑
i=1

(Fi (x)− Ti)
2

Can either have a solver that uses f (x) or [F1(x), . . . ,Fr (x)].

16 of 39.

Opening up the black box

100 200 300 400 500 600 700 800 900 1000 1100 1200
0.058

0.075

0.1

0.14

0.2

0.4

0.8

Number of Iterations

F
it
 V

a
lu

e
 (

lo
g
 s

c
a
le

)

Serial** PSO

Serial Simplex

Serial POUNDERS

1024−Core PSO

Tuning quadrapole moments for a particle accelerator simulation.

f (x) =

r∑
i=1

(Fi (x)− Ti)
2

Can either have a solver that uses f (x) or [F1(x), . . . ,Fr (x)].

16 of 39.

Opening up the black box

200 400 600 800 1000 1200 1400

10
1

10
2

10
3

10
4

Number of Evaluations

B
e

s
t

f
v
a

lu
e

 f
o

u
n

d

POUNDER

POUNDER warm

POUNDERS

POUNDERS warm

Energy density functional calibrations.

F (x) : R16 → R2049

2n experimental design
around starting point

17 of 39.

Opening up the black box

0 100 200 300 400

10
4

10
6

10
8

10
10

Number of Evaluations

pounder

pounders

poundersm

Energy density functional calibrations.

F (x) : R16 → R2049

Fi (x) = B([x]1−13) + g(x)

17 of 39.

Opening up the black box

0 50 100 150 200 250 300 350 400 450

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Evaluations

B
e
s
t
M

e
ri
t
F

u
n
c
ti
o
n
 V

a
lu

e

All Ders.

Constraint Ders.

No Ders.

No Structure

Small gas network problem.

I 15 variables
I 11 constraints

I ∇x f and ∇xc
I f and ∇xc
I f and c

(separate)
black boxes

I Penalizing
constraints

18 of 39.

Exploiting Structure
I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

where ∇F is unavailable but ∂h is known

I Multiple objectives

I Controllable accuracy

I Multiple local minima

19 of 39.

Exploiting Structure
I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

where ∇F is unavailable but ∂h is known

I Multiple objectives

I Controllable accuracy

I Multiple local minima

19 of 39.

Exploiting Structure
I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

where ∇F is unavailable but ∂h is known

I Multiple objectives

I Controllable accuracy

I Multiple local minima

19 of 39.

Exploiting Structure
I Nonsmooth, composite optimization

minimize
x

f (x) = h(F (x))

where ∇F is unavailable but ∂h is known

I Multiple objectives

I Controllable accuracy

I Multiple local minima

19 of 39.

Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

20 of 39.

Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

20 of 39.

Motivation

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

20 of 39.

Why concurrency? Tiled QR example

FlatTree(TS)
PlasmaTree(TS) (best)
FlatTree(TT)
PlasmaTree(TT) (best)
Fibonacci(TT)
Greedy

P
re
d
ic
te
d
G
F
L
O
P
/s

q

1 2 3 4 5 6 7 8 9 10 20 30 40

20

40

60

80

100

120

140

160

[Bouwmeester, et al., Tiled QR Factorization Algorithms, 2011]

21 of 39.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

22 of 39.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

22 of 39.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

22 of 39.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

22 of 39.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D

I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

22 of 39.

Global DFO

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

I Either assume additional properties about the problem
I convex f
I separable f
I finite domain D
I concurrent evaluations of f

I Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.

22 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 0; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 1; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 2; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 3; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 4; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 5; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 6; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 7; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 8; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 9; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 10; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 11; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 12; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 13; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 14; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 15; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 16; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 17; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 18; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 19; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 20; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 21; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 22; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 23; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 24; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 25; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 50; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

DIRECT

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Iteration: 99; r_k: Inf

0.6

1.8

3.0

4.2

5.4

6.6

7.8

9.0

23 of 39.

Multistart Methods

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

24 of 39.

Multistart Methods

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

24 of 39.

Multistart Methods

I Explore by random sampling from the domain D
I Refine by using a local optimization run from some subset of points

Desire to find all minima but start only one run for each minimum

+ Get to use (more developed) local optimization routines.
I least-squares objectives, nonsmooth objectives, (un)relaxable
constraints, and more

+ Increased opportunity for parallelism
I objective, local solver, and global solver

- Can require many sequential evaluations for the local solver

24 of 39.

Multi-Level Single Linkage
Given some local optimization routine L:
Algorithm 1: MLSL

for k = 1, 2, . . . do
Sample f at N random points drawn uniformly from D
Start L at all sample points x :

I that has yet to start a run
I @xi : ‖x − xi‖ ≤ rk and f (xi) < f (x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

I Doesn’t naturally translate when evaluations of f are limited

I Ignores some points when deciding where to start L

25 of 39.

Multi-Level Single Linkage
Given some local optimization routine L:
Algorithm 1: MLSL

for k = 1, 2, . . . do
Sample f at N random points drawn uniformly from D
Start L at all sample points x :

I that has yet to start a run
I @xi : ‖x − xi‖ ≤ rk and f (xi) < f (x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57–78, 1987]

I Doesn’t naturally translate when evaluations of f are limited

I Ignores some points when deciding where to start L

25 of 39.

Multi-Level Single Linkage

k = 1; rk = 0.71575;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 1; rk = 0.71575;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 2; rk = 0.60537;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 3; rk = 0.53603;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 4; rk = 0.48825;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 5; rk = 0.45268;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 7; rk = 0.40208;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 18; rk = 0.28209;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 20; rk = 0.27073;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage

k = 22; rk = 0.26079;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

26 of 39.

Multi-Level Single Linkage
I f ∈ C 2, with local minima in the interior of D, and the distance

between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

27 of 39.

Multi-Level Single Linkage
I f ∈ C 2, with local minima in the interior of D, and the distance

between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

27 of 39.

BAMLM
MLSL: (S2)–(S4)

BAMLM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying
(S2-S4) to x̂

28 of 39.

BAMLM
MLSL: (S2)–(S4) BAMLM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying
(S2-S4) to x̂

28 of 39.

BAMLM

Iteration: 0; r_k: Inf

29 of 39.

BAMLM

Iteration: 1; r_k: 0.743

29 of 39.

BAMLM

Iteration: 2; r_k: 0.743

29 of 39.

BAMLM

Iteration: 3; r_k: 0.689

29 of 39.

BAMLM

Iteration: 4; r_k: 0.643

29 of 39.

BAMLM

Iteration: 5; r_k: 0.605

29 of 39.

BAMLM

Iteration: 6; r_k: 0.605

29 of 39.

BAMLM

Iteration: 7; r_k: 0.605

29 of 39.

BAMLM

Iteration: 8; r_k: 0.605

29 of 39.

BAMLM

Iteration: 9; r_k: 0.605

29 of 39.

BAMLM

Iteration: 10; r_k: 0.605

29 of 39.

BAMLM

Iteration: 35; r_k: 0.605

29 of 39.

BAMLM

Iteration: 36; r_k: 0.605

29 of 39.

BAMLM

Iteration: 37; r_k: 0.589

29 of 39.

BAMLM

Iteration: 38; r_k: 0.574

29 of 39.

BAMLM

Iteration: 39; r_k: 0.560

29 of 39.

BAMLM

Iteration: 40; r_k: 0.548

29 of 39.

BAMLM

Iteration: 41; r_k: 0.536

29 of 39.

BAMLM

Iteration: 42; r_k: 0.525

29 of 39.

BAMLM

Iteration: 43; r_k: 0.515

29 of 39.

BAMLM

Iteration: 44; r_k: 0.497

29 of 39.

BAMLM

Iteration: 45; r_k: 0.480

29 of 39.

BAMLM

Iteration: 80; r_k: 0.281

29 of 39.

BAMLM

Iteration: 81; r_k: 0.279

29 of 39.

BAMLM

Iteration: 82; r_k: 0.276

29 of 39.

BAMLM

Iteration: 83; r_k: 0.274

29 of 39.

BAMLM

Iteration: 84; r_k: 0.272

29 of 39.

BAMLM

Iteration: 85; r_k: 0.270

29 of 39.

BAMLM

Iteration: 86; r_k: 0.268

29 of 39.

BAMLM

Iteration: 87; r_k: 0.266

29 of 39.

BAMLM

Iteration: 88; r_k: 0.264

29 of 39.

BAMLM

Iteration: 89; r_k: 0.263

29 of 39.

BAMLM

Iteration: 90; r_k: 0.262

29 of 39.

BAMLM

Iteration: 91; r_k: 0.261

29 of 39.

BAMLM

Iteration: 92; r_k: 0.260

29 of 39.

BAMLM

Iteration: 93; r_k: 0.259

29 of 39.

BAMLM

Iteration: 94; r_k: 0.258

29 of 39.

BAMLM

Iteration: 95; r_k: 0.257

29 of 39.

BAMLM

Iteration: 96; r_k: 0.256

29 of 39.

BAMLM

Iteration: 97; r_k: 0.255

29 of 39.

BAMLM

Iteration: 98; r_k: 0.255

29 of 39.

BAMLM

Iteration: 99; r_k: 0.254

29 of 39.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

30 of 39.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

30 of 39.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

30 of 39.

AAMLM
Algorithm 2: AAMLM
Give each worker a point to evaluate
for k = 1, 2, . . . do

Receive from (longest waiting) worker w that has evaluated f
Update Hk and rk
if point evaluated by w is from an active run then

if Run is complete then
Update X ∗k , and mark points inactive

else
Add the next point in its localopt run (not in Hk) to QL

Start run(s) at all point(s) satisfying (S1)–(S4), (L1)–(L6)
Add the subsequent point (not in Hk) from each run to QL

Merge runs in QL with candidate minima within 2ν of each other
Give w a point at which to evaluate f , either from QL or R

31 of 39.

BAMLM
MLSL: (S2)–(S4) BAMLM: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) @x ∈ Lk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν
from known local minima

x̂ ∈ Lk

(L1) @x ∈ Lk

[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L2) @x ∈ Sk with
[‖x̂ − x‖ ≤ rk and f (x) < f (x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν
from known local minima

(L5) x̂ is not in an active local
optimization run and has not
been ruled stationary

(L6) ∃rk -descent path in Hk from
some x ∈ Sk satisfying
(S2-S4) to x̂

32 of 39.

AAMLM Theory

Theorem
Given the same assumptions as MLSL, AAMLM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

33 of 39.

AAMLM Theory

Theorem
Given the same assumptions as MLSL, AAMLM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

33 of 39.

AAMLM Theory

Theorem
Given the same assumptions as MLSL, AAMLM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists K0 <∞ so that for any K0 consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem
Each x∗ ∈ X ∗ will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.

33 of 39.

Measuring Performance

GLODS Global & local optimization using direct search [Custódio,

Madeira (JOGO, 2014)]

Direct Serial DIRECT [D. Finkel’s MATLAB code]

pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]

Random Uniform sampling over domain (as a baseline)
BAMLM

I Concurrency: 4
I Local optimization method

I ORBIT [Wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
I BOBYQA [Powell, 2009]

I Initial sample size: 10n

I Each method evaluates Direct’s 2n + 1 initial points.

34 of 39.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 at batch k if an
algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.

35 of 39.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The j best local minima have been found at a level τ > 0 at batch k if:∣∣∣{x∗(1), . . . , x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ(n
2 +1)

πn/2 .

35 of 39.

Problems considered
GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I 600 synthetic problems with known local minima

I n = 2, . . . , 7

I 10 local minima in the unit cube with a unique global minimum

I 100 problems for each dimension

I 5 replications (different seeds) for each problem

I 5000 evaluations

36 of 39.

Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

BAMLM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

37 of 39.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

BAMLM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

37 of 39.

Data Profiles
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

BAMLM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

37 of 39.

Data Profiles
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

37 of 39.

Data Profiles
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

37 of 39.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

37 of 39.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

37 of 39.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

BAMLM 4 workers
Random Sampling
pVTdirect 4 workers
Direct (serial)
GLODS (serial)
Direct (idealized)

37 of 39.

Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

37 of 39.

Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

37 of 39.

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I Write/use algorithms that exploit problem structure

Current work:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?

38 of 39.

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I Write/use algorithms that exploit problem structure

Current work:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?

38 of 39.

Closing Remarks

I Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

I Write/use algorithms that exploit problem structure

Current work:
I Finding (or designing) the best local solver for our framework?
I Best way to process the queue?

38 of 39.

AAMLM

Algorithm 2: AAMLM
Give each worker a point to evaluate
for k = 1, 2, . . . do

Receive from (longest waiting) worker w that has evaluated f
Update Hk and rk
if point evaluated by w is from an active run then

if Run is complete then
Update X ∗k , and mark points inactive

else
Add the next point in its localopt run (not in Hk) to QL

Start run(s) at all point(s) satisfying (S1)–(S4), (L1)–(L6)
Add the subsequent point (not in Hk) from each run to QL

Merge runs in QL with candidate minima within 2ν of each other
Give w a point at which to evaluate f , either from QL or R

39 of 39.

